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This paper provides a short review on the application of Maclaurin series in relating
potential functions within the same category of interatomic interaction. The potential
functions covered are those commonly adopted in computational chemistry softwares.
While various mathematical approaches have been employed in generating relationships
amongst potential functions, the use of Maclaurin series has been prevalent recently
due to the increasing application of polynomial series-type potential functions. In the
case of covalent bond-stretching, the Maclaurin series for the exponential function is
used to transform the Morse potential into the polynomial series potential, and vice
versa. For covalent bond-bending, Maclaurin series for the sine and cosine functions
were employed to extract polynomial angle series potential from the Fourier series and
harmonic cosine potential functions, and vice versa. Finally, both the exponential and
the 1/(1 − x) expressions in Maclaurin series were used in obtaining the exact relation-
ship for the repulsive terms between two potential functions.

KEY WORDS: Interatomic interaction, Maclaurin series, polynomial functionals, poten-
tial function

AMS subject classification: 11C08, 26C99, 30B10, 41A10, 74A25, 81V55

Nomenclature

The symbols adopted in this paper for interatomic potential function
parameters follow the meaning given in this list, unless otherwise stated.

α shape parameter of Morse potential
A magnitude parameter of repulsion energy in exponential-6 potential
B shape parameter of repulsion energy in exponential-6 potential
C parameter of attractive energy in exponential-6 potential
Cn Fourier series shape parameter
DM bond dissociation energy in Morse potential
DLJ

9−6 magnitude of minimum well-depth in Lennard–Jones (9–6) potential
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DLJ
12−6 magnitude of minimum well-depth in Lennard–Jones (12–6) potential

η order of accuracy from exponential-6 to Lennard–Jones potentials
k(η) correction factor for repulsive energy between exponential-6 and

Lennard–Jones
kC harmonic cosine stiffness parameter
kF Fourier series “stiffness” (n = 0, 1, 2)

kH harmonic parameter (Hookean stiffness)
kSn

polynomial series parameters (n = 1, 2, 3, . . . )

kθ harmonic angle parameter (angular stiffness)
kθn

polynomial angle series parameter (n = 1, 2, 3, . . . )

r bond length for covalent bonds or interatomic distance for non-bonds
r0 equilibrium bond length
R van der Waals equilibrium distance for non-bonds
θ bond angle
θ0 equilibrium bond angle
UC harmonic cosine potential energy
UF Fourier series potential energy
UH harmonic potential energy
ULJ

9−6 Lennard–Jones (9–6) potential energy
ULJ

12−6 Lennard–Jones (12–6) potential energy
UM Morse potential energy
US polynomial series potential energy
USθ polynomial angle series potential energy
Uθ harmonic angle potential energy
UX6 exponential-6 potential energy
ξ scaling factor between exponential-6 and Lennard–Jones potential

functions

1. Introduction

Although chemistry is largely concerned with reactions whereby chemi-
cal bonds are broken and reformed, the interatomic forces between unreacting
atoms and molecules are nonetheless of great significance. In chemical/molecu-
lar and nano-scale sciences, molecular-scale objects that are being investigated
are of extremely low dimension that direct experimental observation and/or
measurement is difficult, costly and hindered by instrument limitations. As a
result, computer modeling and simulation now play a vital role in the molec-
ular sciences and related fields. Interatomic potential functions are essential in
quantifying the molecular system energies, and are adopted in computational
chemistry softwares. For further development of these interatomic interactions,
researchers have turned to mathematical approaches for gaining insight into fun-
damental knowledge and possible applications (e.g., [1–17]). Recently a number
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of relationships between empirical potential functions of the same class of
interatomic interactions were developed [18–26] for the purpose of developing a
molecular potential function converter. In most of these potential function rela-
tionships, the Maclaurin series expansions have been widely used in extracting
the polynomial functional forms from the “more realistic” potential functions.
Conversely a given polynomial-type potential function can be inversed to give
other potential functions within the same category of interatomic interaction
[27]. The Maclaurin series were also employed in obtaining a spectrum of van
der Waals curves–ranging from the purely Exponential-6 to the purely Lennard–
Jones potential functions. A browse through table 1 shows a balanced adoption
of polynomial-type and non-polynomial-type potential functions for 2-body and
3-body interactions, thereby underlining the importance of parametric conver-
sions amongst these potential functions [28–46]. Likewise the balanced distribu-
tion among Exponential-6 and Lennard–Jones type of van der waals potentials
(see table 1) underscores the relevance of exact relationship between their param-
eters. This paper gives a review on the application of Maclaurin series in relating
the interactomic potential functions with particular focus on the reasoning and
strategy involved.

2. Maclaurin series

The application of polynomials in mathematical chemistry is nothing new.
For example, the Gegenbauer polynomials have been used to calculate the multi-
center nuclear attraction and electron repulsion integrals over Slater orbitals by
Fourier transform method [47]. In the case of “Maclaurin-based” polynomials,
we first consider the Taylor series expansion:

f (x) =
∞∑

n=0

f (n)(x0)
(x − x0)

n

n!
= f (x0) + f ′(x0)

(x − x0)

1!
+ f ′′(x0)

(x − x0)
2

2!
+ · · ·

(1)

The generalized Maclaurin series expansion is the special case of equation
(1) whereby x0 = 0

f (x) =
∞∑

n=0

f (n)(0)
xn

n!
= f (x0) + f ′(x0)

x

1!
+ f ′′(x0)

x2

2!
+ · · · (2)

A list of some simple Maclaurin series are furnished in the appendix. Of
these, equations (A1) and (A4)–(A6) have been employed in relating interatom-
ic potential functions that are used in computational chemistry softwares. The
following sections review the applications of specific Maclaurin series expansions
in generating polynomial functionals based on other potential functions of the
same category of interatomic interaction, and extraction of the latter functions
from the polynomial forms.
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3. Application in bond-stretching potentials

The simplest relation among parameters of bond-stretching potentials is
that between the harmonic potential:

UH = 1
2
kH(r − r0)

2 = 1
2
kH(δr)2 (3)

and the Morse potential

UM = DM {1 − exp [−α(r − r0)]}2 . (4)

By equating

∂2UH

∂r2

∣∣∣∣
r=r0

= ∂2UM

∂r2

∣∣∣∣
r=r0

, (5)

we have

kH = 2DMα2. (6)

Here we note that the harmonic parameter can be obtained from Morse param-
eters but not vice versa. The third type of 2-body potential function is an exten-
sion of the harmonic potential, also known as the polynomial series potential
function:

US = 1
2

m∑
n=2

kSn
(δr)n, (7)

whereby m is a positive integer greater than n. By substituting equation (A4) into
equation (4), and arranging the terms in a series of increasing order of (δr), we
obtain the following potential energy description:

UM

DM
= α2(δr)2 − α3(δr)3 + 7

12
α4(δr)4 − 1

4
α5(δr)5 + 31

360
α6(δr)6 − · · · (8)

By neglecting all except the first term, we have

UM = DMα2(δr)2, (9)

which, upon comparison with equation (3), gives equation (6). The latter
approach, however, is more than just an alternative approach. By considering the
first three terms of equation (8), we arrive at

UM = DMα2(δr)2
[

1 − α(δr) + 7
12

α2(δr)2
]

. (10)
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Equation (10) was reported in the late 1980s by Allinger et al. [34], with credit
given to one Professor L.S. Bartell. Although no mathematical proof was fur-
nished (to this author’s knowledge), the exactness in the fractional form reveals
the usage of series expansion. By comparing terms of equations (7) and (8), we
have 



kS2

kS3

kS4

kS5

kS6




= 2DMα2




1
−α

(7/12)α2

−(1/4)α3

(31/360)α4




. (11)

Whilst a given harmonic potential cannot be converted into a Morse potential,
such conversion is possible for a given polynomial series potential function. Solv-
ing the first two rows of equation (11) gives the Morse parameters in terms of
the polynomial series parameters [24, 27]:

α = −kS3

kS2

, (12)

DM = k3
S2

2k2
S3

. (13)

Alternatively, solving the first and third rows of equation (11) leads to

α =
√

12
7

(
kS4

kS2

)
, (14)

DM = 7
24

(
k2

S2

kS4

)
. (15)

The trend goes on whereby any combination of two kSn
parameters can give the

two Morse parameters. This is hardly surprising since it is easy to see that two
independent equations are required to solve for two variables. In a parallel devel-
opment [48], both equations (A1) and (A4) were applied to obtain a long range
relationship between the Morse potential and the Rydberg potential [49] (also
known as the 2-body portion of Murrell-Mottram potential [50]).

4. Application in bond-bending potentials

Commonly adopted potential functions for 3-body interactions are the
harmonic angle potential

Uθ = 1
2
kθ (θ − θ0)

2 = 1
2
kθ (δθ)2 , (16)
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the polynomial angle series potential

USθ
= 1

2

m∑
n=2

kθn
(δθ)n, (17)

the Fourier series potential

UF = kF

m∑
n=0

Cn cos (nθ) (18)

and the harmonic cosine potential

UC = 1
2
kC (cos θ − cos θ0)

2 . (19)

To apply the Maclaurin series expansions, we firstly express the bond angle (θ )
in terms of the equilibrium bond angle (θ0) and the amount of bending (δθ ):

θ = θ0 + δθ. (20)

To do so in transforming the harmonic cosine parameters to polynomial angle
series parameters, it is essential that the following term in equation (19) be
expanded as

(cos θ−cos θ0)
2 =cos2 θ0

[
cos2(δθ)−2 cos(δθ) + 1

]
+ 2 sin θ0 cos θ0 sin(δθ) [1−cos(δθ)]+sin2

θ0 sin2
(δθ). (21)

Substituting the Maclaurin series expansions, equations (A5) and (A6), into
the terms cos(δθ) and sin(δθ), respectively in equation (21), and rearranging in
increasing powers of (δθ ), we arrive at [19]

UC = 1
2
kC sin2

θ0(δθ)2 + 1
2
kC sin θ0 cos0(δθ)3

− 1
2
kC

(
1
3

sin2
θ0 − 1

4
cos2 θ0

)
(δθ)4 − 1

2
kC

(
1
4

sin θ0 cos θ0

)
(δθ)5

+ 1
2
kC

(
2
45

sin2
θ0 − 1

24
cos2 θ0

)
(δθ)6. (22)

Comparing equation (22) with equation (17) for m = 6 gives the polynomial
angle parameters in terms of harmonic cosine parameters



kθ2

kθ3

kθ4

kθ5

kθ6




= kC




sin2
θ0

sin θ0 cos θ0

−(1/3) sin2
θ0 + (1/4) cos2 θ0

−(1/4) sin θ0 cos θ0

(2/45) sin2
θ0 − (1/24) cos2 θ0




. (23)
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By solving the first two rows of equation (23), we have the harmonic cosine
parameter in terms of the polynomial angle parameters [24, 27]:

kC = 2(kθ2 − kθ3)

1 − (sin 2θ0 + cos 2θ0)
. (24)

A simpler alternative would be the use of the first and third rows of equation
(23), which gives

kC = 4
3

(
kθ2 + kθ4

cos2 θ0

)
. (25)

As in the case of obtaining Morse parameters in 2-body interaction, any combi-
nation of two kθn

parameters – with the equilibrium bond angle θ0 – can lead to
the harmonic cosine stiffness parameter, kC.

In relating the Fourier series parameters to the polynomial angle series
parameter, it is essential to apply equation (20) in equation (18) such that

2∑
n=0

Cn cos(nθ) =
2∑

n=0

Cn [cos(nθ0) cos(nδθ) − sin(nθ0) sin(nδθ)]. (26)

Substituting the Maclaurin series expansions – i.e. equations (A5) and (A6) into
the terms cos(δθ) and sin(δθ), respectively in equation (26) – and arranging in
increasing powers of δθ leads to [19]

UF = kF (C0 + C1 cos θ0 + C2 cos 2θ0) − kF
(
C1 sin θ0 + 2C2 sin 2θ0

)
(δθ)

−1
2
kF (C1 cos θ0 + 4C2 cos 2θ0) (δθ)2 + 1

6
kF
(
C1 sin θ0 + 8C2 sin 2θ0

)
(δθ)3

+ 1
24

kF (C1 cos θ0 + 16C2 cos 2θ0) (δθ)4

− 1
120

kF
(
C1 sin θ0 + 32C2 sin 2θ0

)
(δθ)5

− 1
720

kF (C1 cos θ0 + 64C2 cos 2θ0) (δθ)6 (27)

or, in a more compact form,

UF

kF
=

3∑
p=0

2∑
n=0

(−1)p

(2p)!
n2pCn cos(nθ0)(δθ)2p

+
3∑

p=1

2∑
n=0

(−1)p

(2p − 1)!
n2p−1Cn cos(nθ0)(δθ)2p−1. (28)
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Comparing equation (27) with equation (17) for m = 6 yields the polynomial
angle parameters in terms of Fourier series parameters:




kθ2

kθ3

kθ4

kθ5

kθ6




= 2kF




− 1
2!

2∑
n=1

n2Cn cos(nθ0)

+ 1
3!

2∑
n=1

n3Cn sin(nθ0)

+ 1
4!

2∑
n=1

n4Cn cos(nθ0)

− 1
5!

2∑
n=1

n5Cn sin(nθ0)

− 1
6!

2∑
n=1

n6Cn cos(nθ0)




, (29)

with the implication that the first two terms of equation (27) are zero, i.e.,

kθ0 = 2kF

2∑
n=0

Cn cos(nθ0) = 0, (30)

kθ1 = −2kF

2∑
n=0

nCn sin(nθ0) = 0. (31)

Indeed, solving for Cn(n = 0, 1, 2) from equations (30) and (31) simultaneously
gives the solution by Rappe et al. [38]:

C0 = C2(2 cos2 θ0 + 1), (32)

C1 = −4C2 cos θ, (33)

C2 = 1

4 sin2
θ0

. (34)

However, the Fourier series furnished in equation (29) is expressed in terms of
kF, Cn(n = 0, 1, 2) and θ , but not in terms of θ0. Nevertheless it can be easily
seen from equations (33) and (34) that

cos θ0 = −1
4

(
C1

C2

)
(35)

and

sin θ0 = 1

2
√

C2
, (36)
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thus enabling the term θ0 to be eliminated from equation (29). This gives


kθ2

kθ3

kθ4

kθ5

kθ6




= kF




1
−(1/2)(C1/

√
C2)

−(4/3)C2
[
1 − (7/64)(C1/C2)

2
]

(1/8)(C1/
√

C2)

(8/45)C2
[
1 − (31/156)(C1/C2)

2
]




, (37)

which expresses the polynomial angle parameters in purely Fourier series param-
eters. Conversely, one may obtain the Fourier series from a given polynomial
angle potential function. The first row of equation (37) simply reveals that

kF = kθ2 . (38)

Note that equation (29), which is the equivalent form of equation (37), gives no
such salient indication. The other parameter from the polynomial series poten-
tial, θ0, simply leads to the values of Cn(n = 0, 1, 2), as evident from equations
(32)–(34). That the extraction of Fourier series parameters can be made without
solving from any two rows from equation (37) is obvious, since equation (37) is
obtained with the aid of equations (32)–(34), in the first instance.

5. Application in van der Waals potentials

Development of a mathematical relationship between the exponential-6

UX6 = A exp(−Br) − C

r6
(39)

and the generalized Lennard–Jones (m–n) potential

ULJ
m−n = DLJ

m−n

[
n

m − n

(
R

r

)m

− m

m − n

(
R

r

)n]
; m > n (40)

has been attempted, shown to be applicable for n = 6, and illustrated for the
common cases of Lennard–Jones (12–6) and Lennard–Jones (9–6) potential func-
tions [21]. While relationship between the Lennard–Jones (m−6), for m > 6, and
the exponential-6 potential functions has been shown to be exact for the case of
near equilibrium, a discrepancy was observed for the case of long-range relation-
ship in the repulsive term. That is, the loose form of the Exponential-6 potential

UX6 = DLJ
m−6

{
6

ξ − 6
exp

[
ξ
(

1 − r

R

)]
− ξ

ξ − 6

(
R

r

)6
}

(41)

has been shown to be faulty in the repulsive part of equation (41) which, upon
comparing with that of equation (40) for m = 2n = 12, incorrectly implies that

R

r
= exp

(
1 − r

R

)
. (42)
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As a result of this error the loose form of exponential-6 function described by
equation (41) gives a finite value at r = 0, just as its original form as shown in
equation (39) would, whilst the Lennard–Jones functions give infinite value. To
deal with this error a correction factor k, raised to the power of ξ , was intro-
duced into the repulsive term in equation (41) such that

U
(η)

X6 = DLJ
m−6

{(
k(η)

)ξ 6
ξ − 6

exp
[
ξ
(

1 − r

R

)]
− ξ

ξ − 6

(
R

r

)6
}

, (43)

where η refers to the order of accuracy. This order of accuracy is a measure of
the extent to which the loose form of Exponential-6 conforms to the Lennard–
Jones form. Comparison between equations (40) and (43) for m = ξ = 2n = 12
gives

R

r
= k(η) exp

(
1 − r

R

)
. (44)

As such, applying the Maclaurin series of equations (A1) and (A4), we have

exp
(

1 − r

R

)
= exp

(
−δr

R

)
≡

∞∑
η=0

1
η!

(
−δr

R

)η

(45)

and

R

r
= 1

1 − (−δr/R)
≡

∞∑
η=0

(
−δr

R

)η

, (46)

respectively. Substituting the Maclaurin series expressions of equations (45) and
(46) into equation (44) gives the correction factor

k(η) =
∑η

i=0 (−δr/R)i∑η

i=0 (−δr/R)i/i!
. (47)

A limiting case of the correction factor is where k = 1 (or when the order
of accuracy η = 0), that corresponds to a purely exponential-6 form. On the
other hand as η → ∞ equation (43) tends towards the other end of the spec-
trum, which constitutes the purely Lennard–Jones form. As such, for any pos-
itive integer of the order of accuracy within 0 < η < ∞,we encounter the case
of an interlace between exponential-6 and Lennard–Jones forms. Since the factor
(k(η))ξ occurs at the repulsive term, the correction factor enables a more flexible
curve-fitting at the repulsive region (0 < r < R) without interfering with the
curve-fitting on the attractive region (R < r < ∞).
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6. Closure

Relating potential functions is a necessity when a mismatch occurs between
available reliable parametric data and the computational chemistry softwares’
potential functions. Recent publication on the applications and the extent of
applicability of Maclaurin series expansions for relating interatomic potential
functions have been reviewed in this paper. The choice of Maclaurin series
is a natural one since they enable the expansion of functions into power
series, thereby allowing comparison of terms with the polynomial-type potential
functions.

Appendix: A list of some Maclaurin series expansions

1
1 − x

= 1 + x1 + x2 + x3 + · · · for − 1 < x < 1, (A1)

ln(1 + x) = x1

1
− x2

2
+ x3

3
− x4

4
+ · · · for − 1 < x < 1, (A2)

1
2

ln
(

1 + x

1 − x

)
= x1

1
− x3

3
+ x5

5
− x7

7
+ · · · for − 1 < x < 1, (A3)

exp x = 1 + x1

1!
+ x2

2!
+ x3

3!
+ · · · , (A4)

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ · · · , (A5)

sin x = x1

1!
− x3

3!
+ x5

5!
− x7

7!
+ · · · , (A6)

tan x = x + 1
3
x3 + 2

15
x5 + 17

315
x7 + · · · , (A7)

sec x = 1 + 1
2!

x2 + 5
4!

x4 + 61
6!

x6 + · · · , (A8)

csc x = 1
1
x−1 + 1

6
x1 + 7

360
x3 + 31

15120
x5 + · · · , (A9)

cot x = 1
1
x−1 − 1

3
x1 − 1

45
x3 − 2

945
x5 − · · · (A10)
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